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Outline of lecture

• General discussion: Types of wavefront sensors

• Three types in more detail:

– Shack-Hartmann wavefront sensors

– Curvature sensing

– Pyramid sensing
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At  longer wavelengths, one can measure 
phase directly

• FM radios, radar, radio interferometers like the VLA, 
ALMA

• All work on a narrow-band signal that gets mixed with a 
very precise “intermediate frequency” from a local 
oscillator.  “Heterodyne” measurement.

• Very hard to do this at visible and near-infrared 
wavelengths
– Could use a laser as the intermediate frequency, but 

would need tiny bandwidth of visible or IR light

Thanks to Laird Close’s lectures for making this point
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At visible and near-IR wavelengths, 
measure phase via intensity variations

• Difference between  various wavefront sensor schemes is 
the way in which phase differences are turned into 
intensity differences

• General box diagram:

Guide
star

Turbulence

Telescope Optics
Detector 

of 
Intensity

Recon-
structor

Wavefront sensor

Transforms aberrations into 
intensity variations

Computer
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How to use intensity to measure phase?

• Irradiance transport equation:  A is complex field amplitude, z is 
propagation direction.  (Teague, 1982, JOSA 72, 1199)

• Follow I (x,y,z) as it propagates along the z axis (paraxial ray 
approximation: small angle w.r.t.  z)

Let A(x, y, z) = I(x, y, z)[ ]1/ 2 exp ikφ(x, y, z)[ ]

∂I
∂z

= −∇I •∇φ − I∇2φ

Wavefront tilt: Hartmann and 
Pyramid sensors

Wavefront 
curvature: 
Curvature 
Sensors
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Types of wavefront sensors

• “Direct” in pupil plane: split pupil up into subapertures in 
some way, then use intensity in each subaperture to 
deduce phase of wavefront.  

– Slope sensing: Shack-Hartmann, Pyramid sensing
– Curvature sensing

• “Indirect” in focal plane: wavefront properties are 
deduced from whole-aperture intensity measurements 
made at or near the focal plane.  Iterative methods –
calculations take longer to do.

– Image sharpening
– Phase diversity, phase retrieval, Gerchberg-Saxton (these are 

used, for example, in JWST)
– Usually used to measure nearly static aberrations
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How to reconstruct wavefront from 
measurements of local “tilt”
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Shack-Hartmann wavefront sensor 
concept - measure subaperture tilts

CCD CCD

f

Pupil plane Image plane

Credit: 
A. Tokovinin
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Example: Shack-Hartmann Wavefront 
Signals

Credit: Cyril Cavadore
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Displacement of centroids

• Definition of centroid

• Centroid is intensity 
weighted

← Each arrow represents an  
offset proportional to its 
length

 x ≡
I(x, y) x dxdy∫∫
I(x, y)dxdy∫∫

 y ≡
I(x, y) y dxdy∫∫
I(x, y)dxdy∫∫

Credit: Cyril Cavador
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Notional Shack-Hartmann Sensor spots

Credit: Boston Micromachines
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Displacement of Hartmann Spots

mfl∇⊥φ(x, y)
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Quantitative description of Shack-
Hartmann operation

• Relation between displacement of Hartmann spots and 
slope of wavefront:

where k = 2π / λ , Δx is the lateral displacement of a 
subaperture image, M is the (de)magnification of the 
system, f is the focal length of the lenslets in front of 
the Shack-Hartmann sensor

  

� 

Δ
 
x ∝∇⊥φ(x, y)

kΔ
 
x = M f ∇⊥φ(x, y)



Typical Astronomy WFS

lenslets
relay lens

CCD

200 μ

2 mm

3.15 � reduction

21 � pixels

3x3 pixels/subap

Former Keck AO WFS sensor

Credit: Marcos van Dam



Shack-Hartmann Spots Wavefront shape

Credit: Thorlabs
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How to measure distance a spot has 
moved on CCD?  “Quad cell formula”

� 

δx ≅
b
2
(I2 + I1 )− (I3 + I4 )
(I1+ I2 + I3 + I4 )
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b
2
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Disadvantage: “gain” depends on spot 
size b which can vary during the night

� 

 δx,y =
b
2

(difference  of  I 's )
(sum of I 's )

The picture can't be displayed.

b

Slope = 2/b
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Question

• What might happen if the displacement of the spot 
is > radius of spot?  Why?

?

?
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Signal becomes nonlinear and saturates 
for large angular deviations

b

�Rollover� corresponds to 
spot being entirely outside of 

2 quadrants
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Measurement error from Shack-
Hartmann sensing

• Measurement error depends on size of spot as seen in a 
subaperture, θb , wavelength λ , subaperture size d, and 
signal-to-noise ratio SNR:

(Hardy equation 5.16)

σ S−H = π 2

2 2
 1
SNR

3d
2r0

⎛
⎝⎜

⎞
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2

+ ϑbd
λ

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1/2

 rad    for  r0 ≤ d

σ S−H ≅ 6.3
SNR

 rad of phase    for  r0 = d  and ϑb =
λ
d
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Order of magnitude, for r0 ~ d

• If we want the wavefront error to be < λ/20, we need

Δz ≡ σ
k
<

λ
20

   or   σ ≅
6.3
SNR

 < 2π
20

 so that SNR > 20
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General expression for signal to noise 
ratio of a pixelated detector

• S = flux of detected photoelectrons / subap          

npix = number of detector pixels per subaperture     

R = read noise in electrons per pixel

• The signal to noise ratio in a subaperture for fast CCD 
cameras is dominated by read noise, and

� 

 SNR ≈ Stint

(npixR
2 / tint )

1/ 2 =
S tint

npix R
See McLean, 

�Electronic Imaging in 
Astronomy�, Wiley
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Trade-off between dynamic range and 
sensitivity of Shack-Hartmann WFS

• If spot is diffraction limited in a 
subaperture d, linear range of quad cell 
(2x2 pixels) is limited to ± λref/2d.

• Can increase dynamic range by enlarging 
the spot (e.g. by defocusing it).  

• But uncertainty in calculating centroid      
∝ width x  Nph

1/2 so centroid calculation 
will be less accurate.

• Alternative: use more than 2x2 pixels per 
subaperture.  Decreases SNR if read noise 
per pixel is large (spreading given amount 
of light over more pixels, hence more read 
noise).

Linear 
range
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Correlating Shack-Hartmann wavefront 
sensor uses images in each subaperture

• Solar adaptive optics: Rimmele and Marino, Solar Physics 
Living Reviews

• Cross-correlation is used to track low contrast granulation

• Left: Subaperture images, Right: cross-correlation 
functions
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Brand new result: video of Sun from 
DKIST telescope, with AO



Page 26

Zoomed-in Version
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Review of Shack-Hartmann geometry

f

Pupil plane Image plane
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Pyramid sensor reverses order of 
operations in a Shack-Hartmann sensor
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A Pyramid WFS
Stellar image is placed on the tip of a four sided 

pyramid --- Creates four beams.
Intermediate optics form pupil images from the four 

beams.

29
Credit: Sebastian Egner

Image Plane Pupil Plane
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Pyramid for the William Herschel 
Telescope’s AO system



Page 31

Typical intensity patterns for a 
Pyramid Sensor

Credit: Charlotte Bond
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Aspects of Pyramid Sensors

� More sensitive to low order modes.
� Good match to atmosphere.
� A change in sampling can easily be carried out via 

binning of CCD.

Pyramid Based Systems
• LBT 
• Magellan

• Subaru SCexAO
• Keck IR Pyramid Sensor

Credit: Phil Hinz



Page 33

Modulation of pyramid sensor

Without modulation:
Linear over spot width

With modulation:
Linear over modulation width

Credit: Marcos van Dam
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Potential advantages of pyramid 
wavefront sensors

• Wavefront measurement error can be much lower

– Shack-Hartmann: size of spot limited to λ / d, where d 
is size of a sub-aperture and usually d ~ r0

– Pyramid: size of spot can be as small as λ / D, where D 
is size of whole telescope.  So spot can be D/r0 = 20 -
100 times smaller than for Shack-Hartmann

– Measurement error (e.g. centroiding) is proportional to 
spot size/SNR.  Smaller spot = lower error.

• Avoids bad effects of charge diffusion in CCDs
– Fuzzes out edges of pixels.  
– Pyramid doesn’t mind as much as S-H.  
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Potential pyramid sensor advantages, 
continued

• Linear response over a larger dynamic range

• Naturally filters out high spatial frequency information 
that you can’t correct anyway
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A Sensitivity Comparison
• Assume we have Itotal = 100 photons incident on a wavefront sensor.

• Assume an ideal detector (only photon noise affects precision).

• Compare a 20x20 S-H sensor to a pyramid sensor for measuring tilt.
25 

photon
s

25 
photon

s

25 
photon

s

25 
photon

s

~! /D

• ~300 subapertures

• 0.3 photons per sub aperture
- SNR=0.3/√0.3 = 0.54

• PSF = λ/d = 20 λ /D

• 300 independent measurements  (N=300)

• σtilt = FWHM / SNR / √N = 2.1 λ /D

S-H

Pyramid

• Pyramid has all flux to one side (two pupils) 
when tilt offset is ~1 λ/D 
- (Ia -Ib)/Itotal = 1   -> tilt = (Ia -Ib)/Itotal * λ/D

• There are, on average 50 photons on each 
side to  measure flux balance
- σtilt = [ √ (50+ 50) /100 ]* λ/D = 0.1 * λ/D

a b

Credit: Phil Hinz
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Curvature wavefront sensing

• F. Roddier, Applied Optics, 27, 1223- 1225, 1998

 

I+ − I−
I+ + I−

 ∝  ∇2φ  −  ∂φ
∂r


δR

Laplacian (curvature)

Normal 
derivative at 

boundary

More intense Less intense
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Wavefront sensor lenslet shapes are 
different for edge, middle of pupil

• Example: This is what 
wavefront tilt (which 
produces image motion) 
looks like on a curvature 
wavefront sensor
– Constant I on inside

– Excess I on right edge

– Deficit on left edge

Lenslet array
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Simulation of curvature sensor response

Wavefront: pure tilt Curvature sensor signal

Credit: G. Chanan
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Curvature sensor signal for astigmatism

Credit: G. Chanan
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Practical implementation of curvature 
sensing

• Use oscillating membrane mirror (2 kHz!) to vibrate rapidly 
between   I+ and  I- extrafocal positions

• Measure intensity in each subaperture with an “avalanche 
photodiode” (only need one per subaperture!)
– Detects individual photons, no read noise, QE ~ 60%
– Can read out very fast with no noise penalty

More intense Less intense
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Measurement error from curvature 
sensing

• Error of a single set of measurements is determined by 
photon statistics, since detector has NO read noise!

where d = subaperture diameter and Nph is no. of 
photoelectrons per subaperture per sample period

• Error propagation when the wavefront is reconstructed 
numerically using a computer scales poorly with no. of 
subapertures N: 

(Error)curvature ∝ N, whereas (Error)Shack-Hartmann ∝ log N

� 

σ cs
2 = π 2 1

Nph

θbd
λ

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
2
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Advantages and disadvantages of 
curvature sensing

• Advantages:
– Lower noise ⇒ can use fainter guide stars than S-H
– Fast readout ⇒ can run AO system faster
– Can adjust amplitude of membrane mirror excursion as 
“seeing” conditions change.  Affects sensitivity.

– Well matched to bimorph deformable mirror (both 
solve Laplace’s equation), so less computation.

– Curvature systems appear to be less expensive.

• Disadvantages:
– Avalanche photodiodes can fail with too much light 
– Hard to use a large number of avalanche photodiodes.
– BUT – recently available in arrays
– Doesn’t scale well to large numbers of subapertures
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Summary of main points

• Wavefront sensors in common use for astronomy measure 
intensity variations, deduce phase. Complementary.
– Shack-Hartmann
– Curvature sensors

• Curvature systems: cheaper, fewer degrees of freedom, 
scale more poorly to high no. of degrees of freedom, but 
can use fainter guide stars 

• Shack-Hartmann systems excel at very large no. of 
degrees of freedom

• Most recent addition: pyramid sensors
– Very successful for faint natural guide stars, low modes


