Lecture 8:

Wavefront Sensing

Claire Max Astro 289C, UCSC February 4, 2020

• General discussion: Types of wavefront sensors

- Three types in more detail:
 - Shack-Hartmann wavefront sensors
 - Curvature sensing
 - Pyramid sensing

At longer wavelengths, one can measure phase directly

- FM radios, radar, radio interferometers like the VLA, ALMA
- All work on a narrow-band signal that gets mixed with a very precise "intermediate frequency" from a local oscillator. "Heterodyne" measurement.
- Very hard to do this at visible and near-infrared wavelengths
 - Could use a laser as the intermediate frequency, but would need tiny bandwidth of visible or IR light

Thanks to Laird Close's lectures for making this point

At visible and near-IR wavelengths, measure phase via intensity variations

 Difference between various wavefront sensor schemes is the way in which phase differences are turned into intensity differences

• General box diagram:

How to use intensity to measure phase?

\Alove front

• Irradiance transport equation: A is complex field amplitude, z is propagation direction. (Teague, 1982, JOSA 72, 1199)

Let
$$A(x, y, z) = [I(x, y, z)]^{1/2} \exp[ik\phi(x, y, z)]$$

• Follow *I* (*x*,*y*,*z*) as it propagates along the z axis (paraxial ray approximation: small angle w.r.t. z)

$$\frac{\partial I}{\partial z} = -\nabla I \bullet \nabla \phi - I \nabla^2 \phi$$

$$\frac{\partial I}{\partial z} = -\nabla I \bullet \nabla \phi - I \nabla^2 \phi$$

$$\frac{\partial I}{\partial z} = -\nabla I \bullet \nabla \phi - I \nabla^2 \phi$$

$$\frac{\partial I}{\partial z} = -\nabla I \bullet \nabla \phi - I \nabla^2 \phi$$

$$\frac{\partial I}{\partial z} = -\nabla I \bullet \nabla \phi - I \nabla^2 \phi$$

$$\frac{\partial I}{\partial z} = -\nabla I \bullet \nabla \phi - I \nabla^2 \phi$$

$$\frac{\partial I}{\partial z} = -\nabla I \bullet \nabla \phi - I \nabla^2 \phi$$

$$\frac{\partial I}{\partial z} = -\nabla I \bullet \nabla \phi - I \nabla^2 \phi$$

$$\frac{\partial I}{\partial z} = -\nabla I \bullet \nabla \phi - I \nabla^2 \phi$$

$$\frac{\partial I}{\partial z} = -\nabla I \bullet \nabla \phi - I \nabla^2 \phi$$

$$\frac{\partial I}{\partial z} = -\nabla I \bullet \nabla \phi - I \nabla^2 \phi$$

$$\frac{\partial I}{\partial z} = -\nabla I \bullet \nabla \phi - I \nabla^2 \phi$$

$$\frac{\partial I}{\partial z} = -\nabla I \bullet \nabla \phi - I \nabla^2 \phi$$

$$\frac{\partial I}{\partial z} = -\nabla I \bullet \nabla \phi - I \nabla^2 \phi$$

$$\frac{\partial I}{\partial z} = -\nabla I \bullet \nabla \phi - I \nabla^2 \phi$$

$$\frac{\partial I}{\partial z} = -\nabla I \bullet \nabla \phi - I \nabla^2 \phi$$

$$\frac{\partial I}{\partial z} = -\nabla I \bullet \nabla \phi - I \nabla^2 \phi$$

$$\frac{\partial I}{\partial z} = -\nabla I \bullet \nabla \phi - I \nabla^2 \phi$$

$$\frac{\partial I}{\partial z} = -\nabla I \bullet \nabla \phi - I \nabla^2 \phi$$

$$\frac{\partial I}{\partial z} = -\nabla I \bullet \nabla \phi - I \nabla^2 \phi$$

$$\frac{\partial I}{\partial z} = -\nabla I \bullet \nabla \phi - I \nabla^2 \phi$$

$$\frac{\partial I}{\partial z} = -\nabla I \bullet \nabla \phi - I \nabla^2 \phi$$

$$\frac{\partial I}{\partial z} = -\nabla I \bullet \nabla \phi - I \nabla^2 \phi$$

$$\frac{\partial I}{\partial z} = -\nabla I \bullet \nabla \phi - I \nabla^2 \phi$$

$$\frac{\partial I}{\partial z} = -\nabla I \bullet \nabla \phi - I \nabla^2 \phi$$

$$\frac{\partial I}{\partial z} = -\nabla I \bullet \nabla \phi - I \nabla^2 \phi$$

$$\frac{\partial I}{\partial z} = -\nabla I \bullet \nabla \phi$$

$$\frac{\partial I}{\partial z} = -\nabla I \bullet \nabla \phi$$

$$\frac{\partial I}{\partial z} = -\nabla I \bullet \nabla \phi$$

$$\frac{\partial I}{\partial z} = -\nabla I \bullet \nabla \phi$$

$$\frac{\partial I}{\partial z} = -\nabla I \bullet \nabla \phi$$

Types of wavefront sensors

• **"Direct" in pupil plane:** split pupil up into subapertures in some way, then use intensity in each subaperture to deduce phase of wavefront.

- Slope sensing: Shack-Hartmann, Pyramid sensing
- Curvature sensing
- "Indirect" in focal plane: wavefront properties are deduced from whole-aperture intensity measurements made at or near the focal plane. Iterative methods calculations take longer to do.
 - Image sharpening
 - Phase diversity, phase retrieval, Gerchberg-Saxton (these are used, for example, in JWST)
 - Usually used to measure nearly static aberrations

How to reconstruct wavefront from measurements of local "tilt"

Figure 7 (a) Local tilt as a function of sampling location in pupil; (b) reconstructed wavefront estimate.

Shack-Hartmann wavefront sensor concept - measure subaperture tilts

Credit: A. Tokovinin

Pupil plane

Image plane

Example: Shack-Hartmann Wavefront Signals

Credit: Cyril Cavadore

Displacement of centroids

Credit: Cyril Cavador

• Definition of centroid

$$\overline{x} \equiv \frac{\int \int I(x,y) x \, dx \, dy}{\int \int I(x,y) \, dx \, dy}$$
$$\overline{y} \equiv \frac{\int \int I(x,y) \, y \, dx \, dy}{\int \int I(x,y) \, dx \, dy}$$

• Centroid is intensity weighted

Each arrow represents an offset proportional to its length
 Page 10

Notional Shack-Hartmann Sensor spots

Credit: Boston Micromachines

Displacement of Hartmann Spots

Quantitative description of Shack-Hartmann operation

 Relation between displacement of Hartmann spots and slope of wavefront:

$$\Delta \vec{x} \propto \nabla_{\perp} \phi(x, y)$$
$$k \Delta \vec{x} = M f \nabla_{\perp} \phi(x, y)$$

where $k = 2\pi / \lambda$, Δx is the lateral displacement of a subaperture image, M is the (de)magnification of the system, f is the focal length of the lenslets in front of the Shack-Hartmann sensor Page 13

Credit: Marcos van Dam

Shack-Hartmann Spots

Wavefront shape

How to measure distance a spot has moved on CCD? "Quad cell formula"

Disadvantage: "gain" depends on spot size b which can vary during the night

b (difference of I's) δ 2 x,y(sum of I's)

 What might happen if the displacement of the spot is > radius of spot? Why?

Signal becomes nonlinear and saturates for large angular deviations

"Rollover" corresponds to spot being entirely outside of 2 quadrants

Measurement error from Shack-Hartmann sensing

Page 20

• Measurement error depends on size of spot as seen in a subaperture, θ_b , wavelength λ , subaperture size d, and signal-to-noise ratio SNR:

$$\sigma_{S-H} = \frac{\pi^2}{2\sqrt{2}} \frac{1}{SNR} \left[\left(\frac{3d}{2r_0} \right)^2 + \left(\frac{\vartheta_b d}{\lambda} \right)^2 \right]^{1/2} \text{ rad } \text{ for } r_0 \leq d$$

 $\sigma_{S-H} \cong \frac{6.3}{SNR}$ rad of phase for $r_0 = d$ and $\vartheta_b = \frac{\lambda}{d}$

(Hardy equation 5.16)

• If we want the wavefront error to be < $\lambda/20$, we need

$$\Delta z \equiv \frac{\sigma}{k} < \frac{\lambda}{20}$$
 or $\sigma \cong \frac{6.3}{SNR} < \frac{2\pi}{20}$ so that SNR > 20

General expression for signal to noise ratio of a pixelated detector

- S = flux of detected photoelectrons / subap
 - *n*_{pix} = number of detector pixels per subaperture
 - *R* = read noise in electrons per pixel
- The signal to noise ratio in a subaperture for fast CCD cameras is dominated by read noise, and

$$SNR \approx \frac{St_{\text{int}}}{\left(n_{pix}R^2 / t_{\text{int}}\right)^{1/2}} = \frac{S\sqrt{t_{\text{int}}}}{\sqrt{n_{pix}R}}$$

See McLean, "Electronic Imaging in Astronomy", Wiley

Trade-off between dynamic range and sensitivity of Shack-Hartmann WFS

- If spot is diffraction limited in a subaperture *d*, linear range of quad cell (2x2 pixels) is limited to $\pm \lambda_{ref}/2d$.
- Can increase dynamic range by enlarging the spot (e.g. by defocusing it).
- But uncertainty in calculating centroid
 ∝ width x N_{ph}^{1/2} so centroid calculation will be less accurate.
- Alternative: use more than 2x2 pixels per subaperture. Decreases *SNR* if read noise per pixel is large (spreading given amount of light over more pixels, hence more read noise).

Correlating Shack-Hartmann wavefront sensor uses images in each subaperture

 Solar adaptive optics: Rimmele and Marino, Solar Physics Living Reviews

Cross-correlation is used to track low contrast granulation

Left: Subaperture images, Right: cross-correlation Page 24

Brand new result: video of Sun from DKIST telescope, with AO

10 Dec. 2019 19:24:31 UT

Zoomed-in Version

Review of Shack-Hartmann geometry

Pyramid sensor reverses order of operations in a Shack-Hartmann sensor

SH WFS

P₩FS

Figure 3- 4: Organization of SH wavefront data (left) versus pyramid wavefront data (right). The circle indicates the beam footprint on the WFS. The heavily-weighted squares on the left indicate the various subapertures (8x8 grid of subapertures). Each subaperture has 4 pixels (a quad cell). In a pyramid wavefront sensing scheme, each pixel represents a subaperture; the 4 images of the pupil correspond to the quadrants of the quad cell.

Stellar image is placed on the tip of a four sided pyramid --- Creates four beams.

Intermediate optics form pupil images from the four

beams.

Pyramid for the William Herschel Telescope's AO system

Typical intensity patterns for a Pyramid Sensor

Page 31

Figure 1: Effect of low order phase aberrations on the wavefront (a), focal plane (b) and Pyramid WFS signal (c). From left to right: flat, tip-tilt, focus, and astigmatism.

Credit: Charlotte Bond

Aspects of Pyramid Sensors

Page 32

More sensitive to low order modes.

Good match to atmosphere.

A change in sampling can easily be carried out via binning of CCD.

Pyramid Based Systems

- LBT
- Magellan
- Subaru SCexAO
- Keck IR Pyramid Sensor

Credit: Marcos van Dam

Potential advantages of pyramid wavefront sensors

Page 34

Wavefront measurement error can be much lower

- Shack-Hartmann: size of spot limited to λ / d, where d is size of a sub-aperture and usually d \sim r_0
- Pyramid: size of spot can be as small as λ / D, where D is size of whole telescope. So spot can be D/r₀ = 20 100 times smaller than for Shack-Hartmann
- Measurement error (e.g. centroiding) is proportional to spot size/SNR. Smaller spot = lower error.
- Avoids bad effects of charge diffusion in CCDs
 Fuzzes out edges of pixels.
 Puramid doesn't mind as much as S-H
 - Pyramid doesn't mind as much as S-H.

Potential pyramid sensor advantages, continued

- Linear response over a larger dynamic range
- Naturally filters out high spatial frequency information that you can't correct anyway

A Sensitivity Comparison

- Assume we have Itotal = 100 photons incident on a wavefront sensor.
- Assume an ideal detector (only photon noise affects precision).
- Compare a 20x20 S-H sensor to a pyramid sensor for measuring tilt.

S-H

- ~300 subapertures
- 0.3 photons per sub aperture
 - SNR=0.3/√0.3 = 0.54
- PSF = λ/d = 20 λ/D
- 300 independent measurements (N=300)
- $\sigma_{\text{tilt}} = \text{FWHM} / \text{SNR} / \sqrt{N} = 2.1 \text{ }\lambda / \text{D}$

- Pyramid has all flux to one side (two pupils) when tilt offset is ~1 λ /D
 - $(I_a I_b)/I_{total} = 1 -> tilt = (I_a I_b)/I_{total} * \lambda/D$
- There are, on average 50 photons on each side to measure flux balance
 - $\sigma_{\text{tilt}} = [\sqrt{(50+50)}/100]^* \lambda/D = 0.1 * \lambda/D$

Curvature wavefront sensing

• F. Roddier, Applied Optics, 27, 1223- 1225, 1998

Laplacian (curvature)

Wavefront sensor lenslet shapes are different for edge, middle of pupil

- Example: This is what wavefront tilt (which produces image motion) looks like on a curvature wavefront sensor
 - Constant I on inside
 - Excess I on right edge
 - Deficit on left edge

Simulation of curvature sensor response

Curvature sensor signal for astigmatism

Z_{2,-2}

Difference Image

Credit: G. Chanan

Practical implementation of curvature sensing

- Use oscillating membrane mirror (2 kHz!) to vibrate rapidly between I₊ and I₋ extrafocal positions
- Measure intensity in each subaperture with an "avalanche photodiode" (only need one per subaperture!)
 - Detects individual photons, no read noise, QE ~ 60%
 - Can read out very fast with no noise penalty

Measurement error from curvature sensing

Page 42

• Error of a single set of measurements is determined by photon statistics, since detector has NO read noise!

$$\sigma_{cs}^2 = \pi^2 \frac{1}{N_{ph}} \left(\frac{\theta_b d}{\lambda}\right)^2$$

where d = subaperture diameter and N_{ph} is no. of photoelectrons per subaperture per sample period

• Error propagation when the wavefront is reconstructed numerically using a computer scales poorly with no. of subapertures *N*:

 $(\text{Error})_{\text{curvature}} \propto N$, whereas $(\text{Error})_{\text{Shack-Hartmann}} \propto \log N$

Advantages and disadvantages of curvature sensing

Page 43

• Advantages:

- Lower noise \Rightarrow can use fainter guide stars than S-H
- Fast readout \Rightarrow can run AO system faster
- Can adjust amplitude of membrane mirror excursion as "seeing" conditions change. Affects sensitivity.
- Well matched to bimorph deformable mirror (both solve Laplace's equation), so less computation.
- Curvature systems appear to be less expensive.

• Disadvantages:

- Avalanche photodiodes can fail with too much light
- Hard to use a large number of avalanche photodiodes.
- BUT recently available in arrays
- Doesn't scale well to large numbers of subapertures

Summary of main points

- Wavefront sensors in common use for astronomy measure intensity variations, deduce phase. Complementary.
 - Shack-Hartmann
 - Curvature sensors
- Curvature systems: cheaper, fewer degrees of freedom, scale more poorly to high no. of degrees of freedom, but can use fainter guide stars
- Shack-Hartmann systems excel at very large no. of degrees of freedom
- Most recent addition: pyramid sensors
 Very successful for faint natural guide stars, low modes